欢迎书友访问POPO原创市集
首页走进不科学 第1410节

第1410节

    这种涉及到大量数学的组合过程,对他来说倒是要比一些理论概念更加好理解——毕竟其中很多参数和固态物理是互通的。
    “适配导数算符,即满足▽agbc=0,则▽aζb+▽bζa=0……”
    “最大对称的时空所以要有最大的killing矢量场,黎曼曲率张量的定义▽a▽bζc-▽b▽aζc=rabcdζd带入得……”
    “把这个张量等式化在坐标里……”
    “12345678abcdefg……”
    几分钟后。
    黄昆有些惊疑不定的抬起头,犹疑着对杨振宁问道:
    “老杨,你们准备从对偶的情况入手?”
    杨振宁轻轻点了点头:
    “没错。”
    黄昆顿时默然。
    怎么说呢……
    杨振宁和李政道想到的这个模型,从某种意义上来看确实挺有意思的:
    模型的两个支点来自不同的理论,关联的情景也不相同,甚至连时空维数也不一样。
    但是……
    在引入对偶的概念后,它忽然发生了某些变化。
    所谓对偶,指的是如果一个物理系统有两种不同但等价的描述方式,那么这两种描述方式是对偶的。
    比较知名的例子有经典二维ising模型的自对偶,二维xy模型的粒子涡旋对偶。
    还有一维相互作用费米子体系的玻色化,原则上也算是一类对偶。
    在杨振宁和李政道他们做出的这个对偶模型中。
    当一个理论是强耦合的时候,另一个理论就是弱耦合的。
    二者用一个很微妙的方式,将广义相对论和量子力学的一些东西结合在了一起。
    根据黄昆刚刚做出的简单演算。
    杨振宁此前推导出的量子化环路积分在这个模型下是成立的,但是也就仅此而已了。
    如果换做其他任何一个粒子,无论是电子、质子还是中微子,它们都在模型下是失效的——至少数学上如此。
    比如说质子。
    如果根据这个对偶计算,一枚质子的质量最终会显示300多克,中微子的质量甚至是负的……
    不过这情况早就在黄昆的预料之中,毕竟杨振宁一开始就说过了,这是专门为引力子做的模型。
    接着黄昆放下手中的笔,对杨振宁问道:
    “老杨,这个框架已经做出来了……那么技术上的应用呢?”
    “你准备怎么使用这个框架,去捞引力子这条大鱼?”
    早先提及过。
    引力子理论上的能级接近普朗克尺度,这种尺度别说现在了,过一百年估摸着都有些够呛。
    黄昆虽然不至于没逼数到现在就想找到引力子,但也没那么宽广到可以等上个一百多年——那时候估摸着华夏足球队都能拿世界杯冠军了吧?
    他能接受的时间线在20-30年左右,再晚不能超过四十年。
    毕竟四十年后,他们这批人差不多都已经接近或者已经辞世了。
    而想要确定具体时间,具体的项目应用就显得很关键了。
    项目的难易、合理与否,直接关系着出结果的时间——至少是理论上的时间。
    随后看着目光灼灼的黄昆,杨振宁沉默了几秒钟:
    “老黄,你还记得我之前和你说的那句话吗?”
    “——以ads为理论基础,整合出一个能够描述引力子的模型,然后再去寻找它在宇宙中的迹象。”
    “你仔细想一想,这句话的重点在哪里。”
    “重点?”
    黄昆重复了一遍杨振宁的话,旋即呼吸一滞:
    “老杨,你是说宇宙中的迹象?”
    杨振宁轻轻点了点头,深沉的抬头看向了天空:
    “没错,宇宙,准确来说是……”
    “原初引力波。”
    ……
    第710章 立约!
    “原初引力波?”
    这一次。
    听到杨振宁抛出的这个概念,黄昆脸上倒没之前那般疑惑了。
    取而代之的。
    则是一抹若有所悟的思色。
    引力波。
    这三个字其实应该分成两部分来理解,也就是“引力”和“波”。
    那么引力为什么会有个波呢?
    答案显然并不是因为引力是个女性,而是因为时空有了结构——我们平时观察到的物质的运动,都是发生在时空之中的。
    某种意义上可以理解为物质是演员,时空是这些演员表演的舞台。
    普通的波,例如水波、声波、电磁波,都是演员在运动,舞台不动。
    而引力波呢,则是舞台本身的运动。
    在小牛的牛顿力学中。
    时空是一个平淡无奇的舞台,因为时间就是均匀的流逝,空间就是均匀的绵延。
    无论物质有多少、怎么运动,对这个舞台都没有影响,所以不可能有波动,也就是此前提及过的绝对时空观。
    但在老爱的相对论中,舞台的性质就很特别了。
    在广义相对论中,老爱对引力的描述方式变得比小牛的平方反比律复杂多了,成了绕一个很大的弯子:
    质量引起时空的弯曲,物体在弯曲的时空中运动,看起来就像是受到引力的作用一样。
    好比诸位面前有一张平坦的纸,它的曲率是零。
    在这张纸上面,三角形的内角和等于180度,圆的周长等于2π乘以半径,如此等等,欧几里得几何(就是你初中学的平面几何)的定理都成立。
    如果把这张纸变形一下,比如说变成一个球面,曲率大于零,许多欧几里得几何的定理在这里就不成立了。
    例如三角形的内角和大于180度——你甚至可以做出三个内角都是直角的球面三角形,它的内角和高达270度,圆的周长小于2π乘以半径等等……
    如果把这张纸变成马鞍形,曲率小于零,你同样也会发现许多违反欧几里得几何的现象,只是表现在相反的方向。
    例如三角形的内角和小于180度,圆的周长大于2π乘以半径。
    当把弯曲的对象从一张纸……也就是一个二维的面推广到相对论的时空……也就是一个四维的几何结构,就明白“时空弯曲”是什么意思了,就是时空的每一点都可以有个或正或负或零的曲率。
    广义相对论给出了质量与附近的时空曲率之间的关系,质量越大,对周围的时空产生的弯曲就越大。
    当一个物体不受其他力、只在引力的作用下运动时,无论时空是弯曲的还是平坦的,它都只是按照距离最短的路线即“短程线”运动。
    如果时空是平坦的,短程线就是直线,这时没有引力,它做的就是匀速直线运动。
    如果时空是弯折的,短程线就变成了曲线。
    这时在其他观察者看来,这个物体似乎就是在引力的作用下运动——例如地球绕太阳的公转轨道,就是地球在太阳周围的弯曲时空中的短程线。
    如果还是没法理解……再举个简单的例子吧。
    太阳好比一个耳根,他往沙发上一坐,就产生一个大坑,那么其他人坐在沙发上时,都会不由自主地被这个大坑陷进去。
    在广义相对论中。
    不同地方的时空可以具有不同的曲率,所以说时空有了结构。
    既然有了结构,自然就可以波动了。
    因此根据广义相对论。
    引力波应该是一种极其常见的现象,任何不是球对称的物体的加速运动都会产生引力波。
    这个概念在理论物理的知名度极广,所以黄昆这次倒是能跟上杨振宁的思路。
    随后他眼神微微一动,朝杨振宁问道:
    “老杨,不对吧,为什么探测到引力波,就能说是找到了引力子?”
    “虽然理论上来说引力波应该具备波粒二象性,但如果从相对论的角度用度规场来对它进行解释,似乎也可以说得通吧?”
    “换而言之……二者之间应该没有那种绝对的辅证关系,否则爱因斯坦也不可能支持引力波的存在了。”
    波粒二象性。
    这个概念最早提出的时候只被用于光子,但后来随着理论发展,已经被推广到了所有的基本粒子。
    所以从波的角度进行逆推,一个微观领域的波,同样也应该有对应的微粒。
    但是……
    引力波却有些特殊。


同类推荐: 全息游戏的情欲任务(H)娇门吟(H)快穿之睡了反派以后这些书总想操我_御书屋活色生仙魔君与魔后的婚后生活四大名著成人版合集如果人外控痴女成为了勇者大人