欢迎书友访问POPO原创市集
首页走进不科学 第1409节

第1409节

    黄昆这才意识到自己似乎做出了下意识的反应,于是连忙有些尴尬的轻咳了一声:
    “哦哦,没啥没啥,只是想岔了,老杨你继续,继续。”
    杨振宁有些古怪的看了眼黄昆,心说这位老同学该不会是上船前被驴给踢过吧……
    随后他很快也深吸一口气,将注意力和话题同时拉回了原处:
    “老黄,我说的这个方法对你……不,可能对于国内来说,都属于一个比较陌生的领域。”
    “实际上如果不是老赵他们的这篇论文给我带来了一些启发,我自己可能也想不到这方面。”
    给黄昆打了个预防针后。
    杨振宁顿了顿,继续说道:
    “老黄,你对ads时空了解多少?”
    “ads时空?”
    黄昆眉头微微一掀,很快答道:
    “老杨,莫非你说的是anti-de sitter……也就是反德西特时空?”
    杨振宁轻轻点了点头。
    早先提及过。
    目前对引力描述最完美的理论便是广义相对论,这个框架叫做“论”,但实际上它的理论核心是一个方程组。
    也就是……爱因斯坦引力场方程。
    这是一组高度复杂的非线性偏微分方程组,要求解的未知函数既包括度规分量gμν,也包括能量动量张量的分量tμν。
    众所周知。
    平直闽氏时空度规是:ηαβ=(-1,1,1,1)以及号差±2。
    所以引力场的空间几何对角线元是:ds2=-(1+2Φ)dt2+(1-2Φ)(dx2+dy2+dz2)
    而引力场静态引力势为:h00=-2Φ,牛顿引力场势为:▽2Φ=-4πgp
    在近拟弱场下可以静态归一化,两式相比较,就得到:h00=-4Φ
    代用牛顿引力势,轻松得到:▽2h00=-16πp;(g=1)
    在等号左侧加上一个表示空间波动的四维算符达朗贝尔□:□h00=-16πp
    设想场的变化只因场源的波动,可有关系:
    □=▽2+0(v2▽2)
    又因为应力能量张量是t00=p,□h00=-16πt这就是“线性爱因斯坦场方程”。
    从这个表达式不难看出,这个方程中对hαβ是线性处理的,就好像一个立体的东西压扁了给你看一样。
    那么自然,质点系的引力场方程为:h00Φ=-8πt
    引入爱因斯坦张量表示在弯曲时空中的静态场量即是:
    gαβ=-8πtαβ。
    同时假设时空物质随着时空面的曲率而分布,就像袋子里的东西分布在袋子里一样,无指标简化表示即为:
    g+Λ=±kt此即爱因斯坦场方程的基本形式。
    Λ是宇宙学常数,爱因斯坦认为自己做错的项目,所以现在先把它看成0即可。
    根据场量显然系数k=8π,左边的是黎曼曲率rαβ,而据比安基恒等式可以完成移项,所以就是:rac-12rgac=8πgtαβ
    若是在电磁场中,根据麦克斯韦方程,空间内真空光速平方系真空电容率与真空磁导率之乘积,即:
    。。c2=μ。e。
    因此。。rac-12rgac=8πgμ。e。tαβ,又因为tαβ是二阶张量场切使用几何单位制c≡1,统一量纲,于是得到:
    rac-12rgac=8πgc4tαβ
    此即……电磁作用下的爱因斯坦场方程。(之前有读者一直好奇场方程怎么来的,有机会就写了一下,全程靠记忆打出来的,应该没错,我这大概是起点第一个把场方程详细推导过程写出来的书?大概……)
    哪怕是截止到后世的2023年。
    爱因斯坦场方程依旧没有解析解,只有一些特解。
    其中最著名的特解显然就是史瓦西解,也就是史瓦西度规——早先提及过,度规就是解的一种说法。
    而在这少数特解中,有一个解最为特殊。
    它便是……
    ads,也就是反德西特度规。
    它是爱因斯坦场方程在宇宙常数为负时的最大对称真空解,通常也被称为“点内空间”。
    这个特解出现的时间很早,毕竟威廉·德西特是最早几位和爱因斯坦共同研究时空结构的学者,反德西特度规和德西特度规都是用他名字命名的。
    但是……
    这个特解虽然存世的时间很长,但一直以来都没有多少物理方面的研究价值。
    不过如今看来,似乎杨振宁在这方面发现了什么?
    随后杨振宁沉吟了一会儿,继续说道:
    “老黄,你应该知道,在反德西特时空中,时空不是渐近下趋向平坦的。”
    “也就是说,在距离中心天体较远处,时空依然有曲率存在,而并非一般的平直空间。”
    “所以我在想,如果我们能以ads为理论基础,整合出一个能够描述引力子的模型,然后再去寻找它在宇宙中的迹象……”
    “这样一来,有没有可能不需要达到普朗克能级,就能够发现引力子的存在呢?”
    黄昆闻言一怔。
    不过很快,他便消化起了杨振宁的想法。
    ads是一个数学上没有问题的场方程特解,和民科或者那些没有根据的猜想完全不是一个性质——很多人提及时空,都会下意识以为是科幻小说的概念。
    但实际上这些科幻概念之所以会出现,有相当多都是因为已经有了物理或者数学上的模型。
    当初的曲率引擎是阿库别瑞度规这事儿已经提过好几遍了,这里另外举个例子。
    1916年的时候。
    奥地利物理学家路德维希·弗拉姆提出了虫洞的概念。
    1935年。
    爱因斯坦和纳森.罗森对虫洞理论进行了完善,他们对称了虫洞的度规,引入径向分量grr和该虫洞喉咙的径向坐标r0,做出了一个数学模型,叫做爱因斯坦罗森桥。
    这玩意儿就是后世几乎所有科幻小说里飞船会穿越的虫洞——这玩意儿真是个数学模型……
    这还没完呢。
    按照原本历史发展。
    眼下这个时期再过一年,罗伯特·富勒和约翰·惠勒就会发表论文证明:
    如果虫洞连接同一个宇宙的两个地方,那么这类虫洞是不稳定的。
    没错,是证明,而不是猜想。
    所以时空这玩意儿在物理界也好,数学界也罢,并不是一个很玄乎的概念——真正玄乎的不是【时空】,而是【文明】。
    爱因斯坦罗森桥如此,此时的杨振宁同样如此。
    杨振宁用非常正式……或者说严肃的态度引入了ads理论,这个理论由于场方程的限制保持着对称性,也就是维持理论的基本框架。
    但与此同时。
    他又摒除了广义相对论中不支持引力子存在的“场”概念,转而在元强子……也就是标准粒子模型中寻找一个合适的支点作为伙伴。
    再然后以这个全新的组合理论,来寻找可能存在的引力子。
    换而言之。
    这应该是一个专门为引力子而适配的模型。
    想到这里。
    黄昆不由看向了杨振宁,问道:
    “老杨,除了ads之外,你搭配的另一个支点理论是什么?”
    杨振宁这次却没有直接回答他,而是望向了一直没怎么出声的李政道:
    “你的看法呢?”
    李政道抬起眼皮,意味深长的看了杨振宁一眼。
    杨振宁的这句话可不是在暗指李政道只听不说,更不是想让李政道出丑,而是想给李政道一个展现自己能力的机会。
    毕竟黄昆如今可是华夏的学部委员,他此行除了迎接杨振宁等人之外,更兼具了初步观察几人的职责。
    或许他本人由于专业问题没法实时听懂一些理论,但只要回去把这些消息一复述,国内自然会有听得懂的人来做出判断。
    “……”
    随后李政道沉默了几秒钟,缓缓说出了自己的答案:
    “我认为……可以用量子系统方程作为切入,因为它可以在某些情景下不引入引力的概念。”
    众所周知。
    量子力学一共有四大关键方程:
    薛定谔方程、海森堡方程、狄拉克方程和密度矩阵方程。
    不过李政道所说的量子系统方程并不是以上任意之一,而是一个涉及到了纯态的方程。
    量子系统一般都用态矢量来表示,即本正交态的系统性质。
    随后李政道写下了一个有些复杂不便展示的表达式,将它与杨振宁此前的ads度规靠到了一起。
    杨振宁则全程没有表达反驳,也就是说李政道的思路和他是一致的。
    黄昆则将两张纸挪到了面前,开始做起了组合。


同类推荐: 全息游戏的情欲任务(H)娇门吟(H)快穿之睡了反派以后这些书总想操我_御书屋活色生仙魔君与魔后的婚后生活四大名著成人版合集如果人外控痴女成为了勇者大人