欢迎书友访问POPO原创市集
首页走进不科学 第846节

第846节

    这句话里的秉性其实和粒子的内禀在某些程度上是一样的,属于‘先天’的属性,诞生之初不会以环境为转移。
    比如一个写小说的鸽子,虽然他欠了几十上百章更新,但他自身的秉性其实并不坏,只是有些懒罢了。
    当然了。
    这只是一个比喻。
    实际上粒子的内禀性质非常复杂,涉及到了规范对称性。
    比如徐云身边那位胖乎乎的尼玛——这里再解释一下,这位的名字真叫尼玛,英文名为nima arkani-hamed。
    在数年前,尼玛曾经说过一句很有名的话:
    3不等于2,这就是规范对称性,2不大于3,这就是内禀。
    总而言之。
    就像球面这种二维面其实并不依赖嵌入到三维空间里,所以曲率就是其内禀属性一样,模量平方算符也是一个可以用数学计算出来的内禀属性。
    只要确定了模量平方算符,再加上之前的占有数算符,就能锁定‘冥王星’粒子的概率位置。
    或者准确点说。
    这是数学上的概率位置,能不能捕捉到就需要实际操作了。
    要是玉皇老儿在自家地界不准备给西方的上帝面子的话,威腾到头来竹篮打水一场空也说不定。
    “小徐。”
    在确定好准备计算模量平方算符后,周绍平沉吟片刻,对徐云说道:
    “这样,球坐标基矢对各坐标变量的导数交给你来做,没问题吧?”
    徐云翻了翻文件,快速点点头:
    “没问题。”
    说完他顿了顿,犹豫片刻,又补充了一句:
    “周院士,要不径向和角向分解也交给我来吧?”
    徐云的这番话不是逞强,也不是抢戏,而是有些担心周绍平的身体。
    虽然周绍平比杨老要年轻一轮,但年纪也奔着90去了,今天前前后后还忙活了这么久,体力和精力的损耗其实是很大的。
    他这个25岁的年轻人此时都有些疲惫,周绍平的情况肯定要更糟糕,只是一直强撑着罢了。
    实际上不仅仅是周绍平。
    现场除了尼玛这个五十岁的“年轻人”,剩下的希格斯、特胡夫特、波利亚科夫都是八十九十岁的人,到了这时候精力的损耗都不低。
    只是眼下这个情况说是分组计算,实质上也可以看做一次无声的战场,各人代表的都是各自的国家——例如希格斯身边的都是英国人,特胡夫特的两位助理也都是尼德兰人,波利亚科夫的助理则是毛熊人。
    因此众人虽累,却没人愿意先开口退场。
    周绍平显然也明白这一点,只见他稍加思索,便很快点了点头:
    “好,那就辛苦你了,小徐。”
    听闻此言。
    周绍平对面的杨老不由抬起头,轻轻看了他一眼。
    虽然杨老前半生常年待在国外,2003年底才重新回国,与国内的科研派系没太多纠葛与接触。
    但周绍平在国际上也颇有名气,因此他的性格和经历杨老还是有所耳闻的。
    周绍平早些年有个很喜欢的学生,天资极佳,大二的时候就被已经当选院士的周绍平收做了弟子。
    几年后,那位学生考上研究生,顺利的进入了周绍平的项目组。
    结果在某次实验中。
    周绍平因为一直加班身体欠佳,那位学生便主动提出了为周绍平分担部分项目的想法,周绍平很自然的同意了。
    结果……
    那位学生在某个环节上出现了计算失误,导致光源因量级过大而超限溢出,造成了设备的严重损坏。
    最终整个项目功亏一篑,5000多块钱的经费打了水漂。
    要知道。
    那可是1983年的五千块钱。
    同时由于实验使用的是一代辐射光源,超限后的辐射射线直接穿过了纵向梯度二极磁铁,导致四位最近的研究人员遭到了辐射,出现了严重的热辐射烧伤现象。
    其中一人在三年后去世,一人肺部出现了极其严重的后遗症,一人双目失明。
    没错。
    这就是发生在怀柔基地的那次意外,也是华夏高能物理史上相当惨重的一次实验事故。
    而那位双目失明的工作人员,正是周绍平的学生黄武祥。
    自那之后。
    周绍平平日里虽然乐呵呵的不发脾气,但在研究上却有个很古怪的坚持:
    凡是已经划定好的任务,他绝不会交给别人去做。
    这个习惯周绍平保持了整整40年,没想到在今天他居然……
    破例了?
    是因为体力不支?
    杨老扫了眼周绍平,心中轻轻摇了摇头。
    不太像。
    虽然周绍平看起来确实有点疲惫,但无论是脸色还是计算效率,都远远没有到‘撑不下去’这种程度。
    而既然不是体力原因,那么答案就只有一个了——
    周绍平遇到了可以真正信赖的后辈,这股信心之强,硬生生盖过了心中的那道梦魇。
    想到这里。
    杨老又悄悄看了眼身边的徐云,脸上的表情有些微妙。
    周绍平、章公定、侯星远、王老……哦,还有杨老本人。
    不知不觉中。
    这个年轻人已经与如此多老一辈院士有过接触,并且得到了他们的承认与帮助,被一位又一位老院士载予厚望。
    纵观整个华夏科学界的年轻一代,徐云是唯一一人。
    不过很有意思的是……
    他本人似乎并没意识到这一点?
    ……
    其实如果徐云能追更到这一章的话,他或许能透过文字内容了解到杨老心中所想。
    但遗憾的是,他并没有这个能力。
    所以此时他的心思压根就没去考虑什么期待或者信任,而是一心投放到了数据的计算上。
    毕竟这是最后的boss了。
    有着狄利克雷的加持,徐云的脑海显得一片清明。
    唰唰唰——
    大量的公式随着笔尖的移动,一个接一个的出现在了算纸上。
    模量平方算符中同时含有位置算符与动量算符,二者存在一种很精确的对易关系。
    如果是通过现象测得的微粒,推导起来其实是很容易的,套模板就行了。
    但问题是‘冥王星’粒子并没有被捕捉过,所以推导过程就非常麻烦了。
    而徐云这次准备的切入点是……
    庞加莱群。
    因为庞加莱群有个很特殊的地方:
    它的表示可以完全由其迷向子群及诱导表示决定。
    借助poincare群万有覆盖的小群在自旋空间上的表示,即可得到该万有覆盖在希尔伯特空间上的不可约幺正表示,即诱导表示。
    不同的迷向子群给出不同的诱导表示,对应不同的单粒子态。
    即粒子的不可约幺正表示,是完全由时空的基本对称性决定了的,不会有其他因素干扰。
    嗯,上面这段话是标准的汉字和人话。
    过了片刻。
    徐云在密级的计算内容下方,写下了算符l^z本征值为m的本征态:
    l^+ψm=cψm+1……
    同时[l^z,l^+]=l^+可得l^zl^+=l^++l^+l^z=l^+(1+l^z),所以可见l^+相当于一个生成算符,l^-相当于一个湮灭算符。
    它们使得l^z的本征值总是依次递增或递减整数1,当角动量的模量平方取定且l^z的最大本征值为m=l-1时,则必有l^+ψl=0。
    看到这里。
    可能有部分众所周同学就感觉有些奇怪了:
    为什么最大本征值是m=l-1呢,不应该是等于l吗?
    原因很简单。
    因为当角动量的模量平方取定且l为m的量最大允许值时,本征值为l+1的态是不存在的。
    由于系统总可以处于轨道角动量为0的状态,所以0必是分量算符l^z的一个本征值。
    而由l^+与l^-的行为可知,对于角动量分量算符l^z,它的相邻本征值之间总是相差一个整数1。
    所以分量算符l^z的本征值只能为m=0,±1,±2,……±l-1。


同类推荐: 全息游戏的情欲任务(H)娇门吟(H)快穿之睡了反派以后这些书总想操我_御书屋活色生仙魔君与魔后的婚后生活四大名著成人版合集如果人外控痴女成为了勇者大人